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Estimation of large-scale dimension densities
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We propose a technique to calculate large-scale dimension densities in both higher-dimensional spatio-
temporal systems and low-dimensional systems from only a few data points, where known methods usually
have an unsatisfactory scaling behavior. This is mainly due to boundary and finite-size effects. With our rather
simple method, we normalize boundary effects and get a significant correction of the dimension estimate. This
straightforward approach is based on rather general assumptions. So even weak coherent structures obtained
from small spatial couplings can be detected with this method, which is impossible by using the Lyapunov-
dimension density. We demonstrate the efficiency of our technique for coupled logistic maps, coupled tent
maps, the Lorenz attractor, and the Roessler attractor.
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[. INTRODUCTION Grassberger-Procaccia algorithm to a few of these coordi-
nates, we obtain results that depend strongly on the chosen
To characterize low-dimensional deterministic systemsgoordinates, because spatially separated coordinates usually
there exists a large number of accepted methphg]. show fewer correlations than neighboring ones. It is, how-
Among these, the Grassberger-Procaccia algoritBhis a  ever, important to note that both possibilities of chosen co-
well-known method, but several pitfalls may result from this ordinates lead to the same systematic errors produced by
technique[4]; it fails especially for higher-dimensional sys- boundary effects. To overcome this difficulty, we propose a
tems, because with the growing dimension of the attractorspecial normalization of the neighboring coordinates to the
the number of data points needed for the calculation is inmore separated ones. This method leads to a suitable correc-
creasing exponentially5,6]. So the Grassberger-Procacciation of these errors and enables us to estimate dimension
algorithm can only be seriously used for low-dimensionaldensities in the rather large scales of a system from surpris-
systemg 7]. For spatially extended systems with higher di- ingly few data points. Because of that, it even works for
mensions, Grassberge8] and Mayer-Kress and Kanek6]  high-dimensional systems and makes it possible to identify
proposed to calculate dimension densities with thedifferent couplings in coupled-map lattices.
Grassberger-Procaccia algorithm, but a criticism has been The dynamical systems that will be studied here are rep-
that due to systematic errors, the dimension density is underesented byn-dimensional time series consisting of vectors

e_sti_mate_t{lO,l]]. Due to this fact, i_t is often impossible to {)Z(t)=(x1(t),x2(t), ... Xm(t))}. The first step to estimate
distinguish between chaos and noise. Another way of chatthe dimension of such an attractor with the Grassberger-

acterizing spatiotemporal chaotic systems is to use therocaccia algorithm is to calculate the correlation integral
Karhunen-Loeve decompositi¢fh2] or to estimate the spec- C(r,m) by

trum of Lyapunov exponentsl3]. The scaling behavior of

the fractal dimension was studied analytically and numeri- 1 . R

cally by Politi and Witt[14]. Another method of calculating C(r,m)= N(N=1) > 0r—|x(t)=x(t), (@)
dimension densities based on random attractors was intro- s

duced by Baueet al. [15]. But a general problem of calcu-
lating dimensions of high-dimensional systems was showr)g
by Olbrich et al [16]. In weakly coupled map lattices, they
observed a sequence of plateaus with increasing values of the d logC(r,m)
dimension for decreasing scales. To get such results, they D,=Ilim lim ————
needed very long time series, which are often not available. rom_= —dlog(r)
In this paper, we present a normalization method that is in-

tended for rather small data sets and covers only the regioifithis limit exists. Because it is impossible to reach the limit
of large scales. We show that for distributed systems that—0 in numerical calculations, one has to estimate this di-
exhibit some spatial correlations, as, for example, coupledmension from larger distances, i.e., the right-hand side of Eq.
map lattices, it is possible to calculate a normalized large¢2) becomes a distance-dependent functg(r,m). For
scale dimension density, which enables us to compare thew-dimensional attractors, there often exists a rather large

hered is the Heaviside function. The correlation dimension
» is then defined as

)

spatial coupling strength in different systems. region in log(r) where thisD,(r,m) is nearly constant, i.e.,
there is a plateau in the plot &f,(r,m) against log(r). This
Il DIMENSION ANALYSIS part is referred to as the scaling regif8]. An important

property of this analysis is that for large distances, compared
First, we consider a spatiotemporal system and use th® the diameter of the attractdd,,(r,m) decreases because
original local coordinates of the system. Applying the of boundary effects. Here boundary means the border of the
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with the Grassberger-Procaccia algorithm for an embedding dimen-
sion of m=20 andN=50000 data points; it does not show any
scaling region.
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shape of the attractor, outside of which no points of the at- P,
tractor are located, and not the fractal boundary to which

every point of the attractor belongs. These boundary effects 05 t

occur in the calculation of the correlation integral because i
usually a point close to the boundary of the attractor has ! iy m
many fewer neighbors within a region of radiusthan a | m=10
point in the center of the attractor. This effect is stronger the 005 50 30 10
largerr is. So for large scales, one counts fewer data points (b) log,(r)

than expected in calculating(r,m), and because of that

D,(r,m) is decreasing, i.e., we get a systematic underesti- FIG. 2. Left: Difference of the dimension densiiq. (7)] ob-
mate. On the other hand, for small distances the dimension igined from separated and neighboring coordinates calculated with
fluctuating rather irregularly due to the finite amount of data.the Grassberger-Procaccia algoritfisystem as in Fig. )1 Right:

In this region, the data points are not dense enough to find &he dimension density for separated coordinates is plotted for dif-

statistically relevant amount of neighbdeee Figs. 1 and)2 ~ ferent numbersn of used coordinates, i.e., for different embedding
dimensions. For large scales, the dimension density does not de-

pend onm. With increasingm, only the region with strong fluctua-
tions is shifted to larger scalesl=50000 data points.
For higher dimensions, it is impossible to reach the scal-
ing region without an extraordinary amount of data and CPUand a spatial coupling of the nearest neighbors,
power. An optimistic estimation of the minimal number of
needed data poinfd is given by[6] }i(t): F(x_1(1),i(1), X 1(1),&) (5)

A. High-dimensional systems

2 Iog(N)>D2Iog(%), (3) with i=1,... N and periodic boundary conditions,

X1(t) =F(Xn(t),X1(1),X2(1), &),
wherer is the scaling region in units of the diameter of the
attractor. That means that for higher-dimensional systéns, Xn(1) = F (Xp— (1), Xn (1), X1(1), €).
is not only growing because of the growing dimension, but it
is also increasing because the scaling region is shifted to- As functions of local dynamics, we use tent maps
wards smaller values af If there is no exceptionally large [t (x)=a|x—1/2]] or logistic maps[f,(x)=ax(1—x)],
data set available, one only gets a region with strongly flucyhich are ordered in a chain consisting of 1000 elements that
tuating valuegfinite-size effectsand a region with decreas- e diffusively coupled with a coupling strengthby
ing values(boundary effects so that no value for the corre-
lation dimension can be estimatefig. 1). Xi(t+1)=F{(1— &)X (1) + (e/2)[X_1 (1) +Xi 41 (D]}
For the following calculations, we use coupled-map lat- (
tices (CML’s) as a paradigmatic example of spatiotemporal
systemq17,18. They are defined by a nonlinear local map-  These systems are often characterized quantitatively by
ping, the density of the Lyapunov dimension, because the equa-
tions of motion are known so that one can calculate the
Xi(t+1)=f(x(t)) (4) Lyapunov exponentg2,19]. To compare our approach with
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this Lyapunov dimension density, we also use dimension 1.5
densities in the following calculations defined by logistic maps
a=4.0

po(r,m)=D,(r,m)/m. (7) £=05

For this dimension density applies(p,(r,m)<1.

For a calculation of the correlation functigfh) from the
original coordinates, it is practically impossible to include all
the 1000 coordinates, so it is necessary to select only some
of them. The result then depends strongly on the chosen
coordinates. Directly neighboring coordinates give smaller

values of the dimension densipy,(r,m) than coordinates 0-0_4_0 _3.0 20 10 .‘o.o
that are far enough separatddee Fig. 2 Here “far @ log,(r)
enough” means that the dimension density does not change
if the distance of the coordinates is increased. In the special 1.5
case of coupled maps, this is fulfilled if one takes every tenth tent maps
coordinate. The values of the dimension density for neigh- a=17
boring coordinates are significantly smaller because they are 19 - €=07
spatially more correlated than separated coordinates. ’

The main step of our approach is to use spatially sepa- Pis
rated coordinates for the normalization. The crucial condi-
tion for this is that there is no correlation between the sepa- 05 |

rated coordinates. The calculation of the dimension density

for up to 20 separated coordinates of the CML demonstrates

that they are indeed uncorrelated because the dimension den-

sity for large scales has the same feature for different num- °-°_4_0 230 20 10 0.0

bers of coordinates; only the region with fluctuating values is ®) log,(r)

shifted to larger scales for more coordinatsse Fig. 2

However it is important to note that for both sorts of coor-  FIG. 3. Large-scale dimension dendifg. (9)] of coupled maps

dinates, i.e, the separated and the neighboring ones, it {sn=20,N=50000) compared with that obtained from the original

impossible to estimate a value of the dimension becausérassberger-Procaccia algorithdotted.

there is no scaling region due to the finite amount of data and

boundary effects, as mentioned above. indicate the degree of spatial dependence. Quantitative re-
In the following, we propose how to calculate a new nor-sults and their interpretation will be discussed for several

malized large-scale dimension density using the differen€xamples below.

correlation properties between separated and neighboring co- As shown above, the dimension density for separated co-

ordinates in a CML. ordinates does not depend on the number of the used coor-
Due to the independence of separated coordinates, the diinates, and we can calculate it with the one-dimensional

mension density for small scales reachgs(r,m) curve of the separated coordinates. In this case, it obviously

=D$(r,m)/m=1. Values ofp3(r,m) <1 calculated with the holds that D5(r,1)=Dj3(r,1) and consequenthD3(r,m)

Grassberger-Procaccia algorithm for large scales are the resmD5(r,1). Hence, one coordinate out of the neighboring

sult of boundary effects if one assumes that the dimensionoordinates works as well. So the large-scale dimension den-

density of separated coordinates is the same for all scalesity is

Because of the correlations between neighboring coordi-

nates, we find smaller values of the dimension density for B D5(r,m)/m

those coordinates. We use this difference between separated pis(r,m)= DY(r.1) ©

and neighboring coordinates for our method of calculating 2

dimension densities. This means another reduction of the data needed to calculate

So we define thdarge-scale dimension densipy(r.m)  the dimension density and also enables us to use our method
by nOfmaliZing the dimension of the neighboring Coordinateqor low-dimensional systems, as shown later.
DJ(r,m) to the dimension of the separated coordinates This simple procedure leads to a surprisingly well-
D3(r,m): expressed plateau yielding an estimatepRf The normal-
ized curve is shown in Fig. 3 and compared with the original
pis(r,m)=D3(r,m)/D3(r,m), (8)  Grassberger-Procaccia algorithm. The normalized curve has
a rather large scaling region, which enables us to estimate a
wheren denotes neighboring argldenotes separated coor- reliable value for the large-scale dimension density of the
dinates. An important property of thigs(r,m) is that it mea-  attractor by averaging all values of this region. For CML'’s,
sures spatial dependence in the system, pg(r,m)=1 if  this means scales of abogtto 3 of the diameter of the
there is no spatial dependence at all, but deviations from Hhttractor.
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FIG. 4. The values calculated out of the plateau of the normal-
ized curve(see Fig. 3 are plotted for different. The bars are the
standard deviation. The value is decreasing for an increasing num-
ber m of used coordinates, but fan>20 one gets a quite good
upper limit.

These results depend on the number of used coordinates,
i.e., on the embedding dimensiam For an increasing, the
value is decreasing as shown in Fig. 4. However, for dimen-
sionsm>20, the value is not decreasing much, so calcula-
tions withm= 20 yield a quite good upper limit for the large-
scale dimension density.

Compared with the Lyapunov dimension density, calcu-
lated out of the Lyapunov exponents via the Kaplan-Yorke
formula[20], our method almost always gives smaller val-
ues. This may result from the large scales we are using for
our estimation. It is important to note that for couplings
< 0.3, the Lyapunov dimension density is always 1, so that
one cannot distinguish between CML’s with small but dif-
ferent coupling. It is an important advantage of our large-
scale dimension density that it is sensitive also to small cou-
plings (Fig. 5 that cannot be detected by the Lyapunov
dimension density.

B. Low-dimensional systems

As shown above, our simple method works well for high-

Here the method works for scales of abduto 35 of the
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FIG. 5. The large-scale dimension density estimated with
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=20 is compared to the Lyapunov dimension denéiligtted for a
CML of 1000 logistic maps with different coupling constants. The
dimension density even detects small couplings between the maps.

log,(r)

-6

log,(r) 2 0

. . e D FIG. 6. Here the large-scale dimensiop (solid line) is com-
dimensional systems. But it is also very efficient for Iow- yareq 1o the correlation dimensiod, calculated with the

dimensional systems if a special transformation of the coorgrassperger-Procaccia algorithfotted ling for the (a) Lorenz
dinates is done with the data set. For the calculation of thgractor (1000 data points;=10, r =28, andb=2) and for the
large-scale dimension, we then need only a fraction of they) Roessler attractor (2000 data points=0.2,b=0.2, andc
data points needed by the Grassberger-Procaccia algorithm.s.7). The dashed line also shows the curvedgrcalculated with

the Grassberger-Procaccia algorithm, but with 10 Q0&renz at-

diameter of the attractor. In the following, we demonstratetractop and 20 000Roessler attractpidata points. The integration
this for the Lorenz and the Roessler system in a chaotic statstep for both systems ist=0.01.
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Looking at the data structure of the Lorenz attractor comD,(r,m)=1.81,=0.02, with an average of 6.0<log,(r)
pared to that of the CML’s, we see one important difference._g g
For the CML's, every coordinate shows the same distribution g i is also possible to calculate the large-scale dimen-

of the values, but for the Lorenz attractor, every coordinate - i+ |ow-dimensional systems with the normalization

has a different distribution. This means that each coordinattrenethod even if the result might be slightly different from the
generates a different cun)(r,1) for normalization, which correlation dimension calculated by the Grassberger-

would give three different results. Therefore, we tranSformProcaccia algorithntas for the Roessler attracioBut the

every coordinate of the data set to an average distribution cédvantage of the reduced amount of data more than compen-
all coordinates. To get this distribution, we sort the values o ates for this slight difference.

every coordinate into numerical order and then average over
the corresponding values. Due to this ranking, the dimension
is invariant[21,22.

The calculation of the large-scale dimensiBn(r,m) In this paper, we have presented a method to calculate
=pis(r,m)*m of the Lorenz attractor with 1000 data points |arge-scale dimension densities. The correction of the bound-
then givesDg(r,m)=2.07 with a standard deviation @f  ary effects leads to a plateau, which makes it possible to
=0.032. Figure 6 shows the curves of the large-scale dimerestimate the value of the large-scale dimension density. This
sion compared with the original Grassberger-Procaccia algazan be used to compare the strength of correlation in spa-
rithm calculated with 1000 and 10 000 data points. For 100Qially extended systems at different local points. It is not
data points, the curve calculated with the Grassbergereertain that the large-scale dimension density gives the same
Procaccia algorithm does not show a plateau, so that ngalue that one would obtain by the Grassberger-Procaccia
value for the dimension can be calculated. The value of thalgorithm for small scales because of the effects shown by
large-scale dimension is an average of the curve values b@lbrich et al. [16]. But it is outside of the scope of this paper
tween—4<log,(r)<—2. This is almost the same result one to calculate exact values of dimensions for all scales. The
gets for averaging the values of the curve calculated with thenain intention is to get an instrument that works for small
Grassberger-Procaccia algorithm using 10000 data pointslata sets.

Averaging the region in betweenr 6<<log,(r)<—4 gives In our future work, we will try some applications to ob-
D,(r,m)=2.06 witho=0.027. servations of complex spatiotemporal behavior with spatial

The same calculations with the Roessler attractor give usorrelations, such as data of climate models, which are much
the following resultgsee Fig. & Dig(r,m)=1.89,0=0.03, more inhomogeneous than CML’s are, so that it is necessary
calculated with 2000 data points, with an average—¢f.7 to transform the coordinates as shown for the low-
<log,(r)<—2.7. A calculation with the Grassberger- dimensional systems. But the available data sets are also
Procaccia algorithm, using 20000 data points, gives usery limited[23].
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