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Estimation of large-scale dimension densities

Corinna Raab and Ju¨rgen Kurths
Institut für Physik, Universita¨t Potsdam, 14415 Potsdam, Germany

~Received 12 October 2000; published 20 June 2001!

We propose a technique to calculate large-scale dimension densities in both higher-dimensional spatio-
temporal systems and low-dimensional systems from only a few data points, where known methods usually
have an unsatisfactory scaling behavior. This is mainly due to boundary and finite-size effects. With our rather
simple method, we normalize boundary effects and get a significant correction of the dimension estimate. This
straightforward approach is based on rather general assumptions. So even weak coherent structures obtained
from small spatial couplings can be detected with this method, which is impossible by using the Lyapunov-
dimension density. We demonstrate the efficiency of our technique for coupled logistic maps, coupled tent
maps, the Lorenz attractor, and the Roessler attractor.
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I. INTRODUCTION

To characterize low-dimensional deterministic system
there exists a large number of accepted methods@1,2#.
Among these, the Grassberger-Procaccia algorithm@3# is a
well-known method, but several pitfalls may result from th
technique@4#; it fails especially for higher-dimensional sys
tems, because with the growing dimension of the attrac
the number of data points needed for the calculation is
creasing exponentially@5,6#. So the Grassberger-Procacc
algorithm can only be seriously used for low-dimension
systems@7#. For spatially extended systems with higher d
mensions, Grassberger@8# and Mayer-Kress and Kaneko@9#
proposed to calculate dimension densities with
Grassberger-Procaccia algorithm, but a criticism has b
that due to systematic errors, the dimension density is un
estimated@10,11#. Due to this fact, it is often impossible t
distinguish between chaos and noise. Another way of ch
acterizing spatiotemporal chaotic systems is to use
Karhunen-Loeve decomposition@12# or to estimate the spec
trum of Lyapunov exponents@13#. The scaling behavior o
the fractal dimension was studied analytically and num
cally by Politi and Witt@14#. Another method of calculating
dimension densities based on random attractors was in
duced by Baueret al. @15#. But a general problem of calcu
lating dimensions of high-dimensional systems was sho
by Olbrich et al. @16#. In weakly coupled map lattices, the
observed a sequence of plateaus with increasing values o
dimension for decreasing scales. To get such results,
needed very long time series, which are often not availa
In this paper, we present a normalization method that is
tended for rather small data sets and covers only the re
of large scales. We show that for distributed systems
exhibit some spatial correlations, as, for example, coup
map lattices, it is possible to calculate a normalized lar
scale dimension density, which enables us to compare
spatial coupling strength in different systems.

II. DIMENSION ANALYSIS

First, we consider a spatiotemporal system and use
original local coordinates of the system. Applying th
1063-651X/2001/64~1!/016216~5!/$20.00 64 0162
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Grassberger-Procaccia algorithm to a few of these coo
nates, we obtain results that depend strongly on the cho
coordinates, because spatially separated coordinates us
show fewer correlations than neighboring ones. It is, ho
ever, important to note that both possibilities of chosen
ordinates lead to the same systematic errors produced
boundary effects. To overcome this difficulty, we propose
special normalization of the neighboring coordinates to
more separated ones. This method leads to a suitable co
tion of these errors and enables us to estimate dimen
densities in the rather large scales of a system from surp
ingly few data points. Because of that, it even works
high-dimensional systems and makes it possible to iden
different couplings in coupled-map lattices.

The dynamical systems that will be studied here are r
resented bym-dimensional time series consisting of vecto

$xW (t)5„x1(t),x2(t), . . . ,xm(t)…%. The first step to estimate
the dimension of such an attractor with the Grassberg
Procaccia algorithm is to calculate the correlation integ
C(r ,m) by

C~r ,m!5
1

N~N21! (
iÞ j

u„r 2uxW~ t i !2xW~ t j !u…, ~1!

whereu is the Heaviside function. The correlation dimensi
D2 is then defined as

D25 lim
r→0

lim
m→`

d logC~r ,m!

2d log~r !
~2!

if this limit exists. Because it is impossible to reach the lim
r→0 in numerical calculations, one has to estimate this
mension from larger distances, i.e., the right-hand side of
~2! becomes a distance-dependent functionD2(r ,m). For
low-dimensional attractors, there often exists a rather la
region in log2(r) where thisD2(r ,m) is nearly constant, i.e.
there is a plateau in the plot ofD2(r ,m) against log2(r). This
part is referred to as the scaling region@3#. An important
property of this analysis is that for large distances, compa
to the diameter of the attractor,D2(r ,m) decreases becaus
of boundary effects. Here boundary means the border of
©2001 The American Physical Society16-1
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shape of the attractor, outside of which no points of the
tractor are located, and not the fractal boundary to wh
every point of the attractor belongs. These boundary effe
occur in the calculation of the correlation integral becau
usually a point close to the boundary of the attractor
many fewer neighbors within a region of radiusr than a
point in the center of the attractor. This effect is stronger
larger r is. So for large scales, one counts fewer data po
than expected in calculatingC(r ,m), and because of tha
D2(r ,m) is decreasing, i.e., we get a systematic undere
mate. On the other hand, for small distances the dimensio
fluctuating rather irregularly due to the finite amount of da
In this region, the data points are not dense enough to fin
statistically relevant amount of neighbors~see Figs. 1 and 2!.

A. High-dimensional systems

For higher dimensions, it is impossible to reach the sc
ing region without an extraordinary amount of data and C
power. An optimistic estimation of the minimal number
needed data pointsN is given by@6#

2 log~N!.D2 logS 1

r D , ~3!

wherer is the scaling region in units of the diameter of t
attractor. That means that for higher-dimensional systemN
is not only growing because of the growing dimension, bu
is also increasing because the scaling region is shifted
wards smaller values ofr. If there is no exceptionally large
data set available, one only gets a region with strongly fl
tuating values~finite-size effects! and a region with decreas
ing values~boundary effects!, so that no value for the corre
lation dimension can be estimated~Fig. 1!.

For the following calculations, we use coupled-map l
tices ~CML’s! as a paradigmatic example of spatiotempo
systems@17,18#. They are defined by a nonlinear local ma
ping,

xi~ t11!5 f „x̃i~ t !… ~4!

FIG. 1. Dimension of coupled tent maps@Eq. ~6!# calculated
with the Grassberger-Procaccia algorithm for an embedding dim
sion of m520 andN550 000 data points; it does not show an
scaling region.
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and a spatial coupling of the nearest neighbors,

x̃i~ t !5F„xi 21~ t !,xi~ t !,xi 11~ t !,«… ~5!

with i 51, . . . ,N and periodic boundary conditions,

x1~ t !5F„xN~ t !,x1~ t !,x2~ t !,«…,

xN~ t !5F„xN21~ t !,xN~ t !,x1~ t !,«….

As functions of local dynamics, we use tent ma
@ f a(x)5aux21/2u# or logistic maps @ f a(x)5ax(12x)#,
which are ordered in a chain consisting of 1000 elements
are diffusively coupled with a coupling strength« by

xi~ t11!5 f a$~12«!xi~ t !1~«/2!@xi 21~ t !1xi 11~ t !#%.
~6!

These systems are often characterized quantitatively
the density of the Lyapunov dimension, because the eq
tions of motion are known so that one can calculate
Lyapunov exponents@2,19#. To compare our approach wit

n-

FIG. 2. Left: Difference of the dimension density@Eq. ~7!# ob-
tained from separated and neighboring coordinates calculated
the Grassberger-Procaccia algorithm~system as in Fig. 1!. Right:
The dimension density for separated coordinates is plotted for
ferent numbersm of used coordinates, i.e., for different embeddi
dimensions. For large scales, the dimension density does no
pend onm. With increasingm, only the region with strong fluctua
tions is shifted to larger scales.N550000 data points.
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this Lyapunov dimension density, we also use dimens
densities in the following calculations defined by

r2~r ,m!5D2~r ,m!/m. ~7!

For this dimension density applies 0<r2(r ,m)<1.
For a calculation of the correlation function~1! from the

original coordinates, it is practically impossible to include
the 1000 coordinates, so it is necessary to select only s
of them. The result then depends strongly on the cho
coordinates. Directly neighboring coordinates give sma
values of the dimension densityr2(r ,m) than coordinates
that are far enough separated~see Fig. 2!. Here ‘‘far
enough’’ means that the dimension density does not cha
if the distance of the coordinates is increased. In the spe
case of coupled maps, this is fulfilled if one takes every te
coordinate. The values of the dimension density for nei
boring coordinates are significantly smaller because they
spatially more correlated than separated coordinates.

The main step of our approach is to use spatially se
rated coordinates for the normalization. The crucial con
tion for this is that there is no correlation between the se
rated coordinates. The calculation of the dimension den
for up to 20 separated coordinates of the CML demonstr
that they are indeed uncorrelated because the dimension
sity for large scales has the same feature for different n
bers of coordinates; only the region with fluctuating values
shifted to larger scales for more coordinates~see Fig. 2!.
However it is important to note that for both sorts of coo
dinates, i.e, the separated and the neighboring ones,
impossible to estimate a value of the dimension beca
there is no scaling region due to the finite amount of data
boundary effects, as mentioned above.

In the following, we propose how to calculate a new no
malized large-scale dimension density using the differ
correlation properties between separated and neighboring
ordinates in a CML.

Due to the independence of separated coordinates, th
mension density for small scales reachesr2(r ,m)
5D2

s(r ,m)/m51. Values ofr2
s(r ,m),1 calculated with the

Grassberger-Procaccia algorithm for large scales are the
sult of boundary effects if one assumes that the dimens
density of separated coordinates is the same for all sca
Because of the correlations between neighboring coo
nates, we find smaller values of the dimension density
those coordinates. We use this difference between sepa
and neighboring coordinates for our method of calculat
dimension densities.

So we define thelarge-scale dimension densityr ls(r ,m)
by normalizing the dimension of the neighboring coordina
D2

n(r ,m) to the dimension of the separated coordina
D2

s(r ,m):

r ls~r ,m!5D2
n~r ,m!/D2

s~r ,m!, ~8!

wheren denotes neighboring ands denotes separated coo
dinates. An important property of thisr ls(r ,m) is that it mea-
sures spatial dependence in the system, i.e.,r ls(r ,m)51 if
there is no spatial dependence at all, but deviations from
01621
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indicate the degree of spatial dependence. Quantitative
sults and their interpretation will be discussed for seve
examples below.

As shown above, the dimension density for separated
ordinates does not depend on the number of the used c
dinates, and we can calculate it with the one-dimensio
curve of the separated coordinates. In this case, it obvio
holds that D2

s(r ,1)5D2
n(r ,1) and consequentlyD2

s(r ,m)
5mD2

n(r ,1). Hence, one coordinate out of the neighbori
coordinates works as well. So the large-scale dimension d
sity is

r ls~r ,m!5
D2

n~r ,m!/m

D2
n~r ,1!

. ~9!

This means another reduction of the data needed to calcu
the dimension density and also enables us to use our me
for low-dimensional systems, as shown later.

This simple procedure leads to a surprisingly we
expressed plateau yielding an estimate ofr ls . The normal-
ized curve is shown in Fig. 3 and compared with the origin
Grassberger-Procaccia algorithm. The normalized curve
a rather large scaling region, which enables us to estima
reliable value for the large-scale dimension density of
attractor by averaging all values of this region. For CML
this means scales of about1

2 to 1
8 of the diameter of the

attractor.

FIG. 3. Large-scale dimension density@Eq. ~9!# of coupled maps
(m520, N550 000) compared with that obtained from the origin
Grassberger-Procaccia algorithm~dotted!.
6-3
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These results depend on the number of used coordin
i.e., on the embedding dimensionm. For an increasingm, the
value is decreasing as shown in Fig. 4. However, for dim
sionsm.20, the value is not decreasing much, so calcu
tions withm520 yield a quite good upper limit for the large
scale dimension density.

Compared with the Lyapunov dimension density, calc
lated out of the Lyapunov exponents via the Kaplan-Yo
formula @20#, our method almost always gives smaller va
ues. This may result from the large scales we are using
our estimation. It is important to note that for couplings«
,0.3, the Lyapunov dimension density is always 1, so t
one cannot distinguish between CML’s with small but d
ferent coupling. It is an important advantage of our larg
scale dimension density that it is sensitive also to small c
plings ~Fig. 5! that cannot be detected by the Lyapun
dimension density.

B. Low-dimensional systems

As shown above, our simple method works well for hig
dimensional systems. But it is also very efficient for low
dimensional systems if a special transformation of the co
dinates is done with the data set. For the calculation of
large-scale dimension, we then need only a fraction of
data points needed by the Grassberger-Procaccia algor
Here the method works for scales of about1

4 to 1
20 of the

diameter of the attractor. In the following, we demonstr
this for the Lorenz and the Roessler system in a chaotic s

FIG. 4. The values calculated out of the plateau of the norm
ized curve~see Fig. 3! are plotted for differentm. The bars are the
standard deviation. The value is decreasing for an increasing n
ber m of used coordinates, but form.20 one gets a quite goo
upper limit.
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FIG. 5. The large-scale dimension density estimated withm
520 is compared to the Lyapunov dimension density~dotted! for a
CML of 1000 logistic maps with different coupling constants. T
dimension density even detects small couplings between the m

FIG. 6. Here the large-scale dimensionmr ls ~solid line! is com-
pared to the correlation dimensionD2 calculated with the
Grassberger-Procaccia algorithm~dotted line! for the ~a! Lorenz
attractor (1000 data points,s510, r 528, andb5

8
3 ) and for the

~b! Roessler attractor (2000 data points,a50.2, b50.2, and c
55.7). The dashed line also shows the curve forD2 calculated with
the Grassberger-Procaccia algorithm, but with 10 000~Lorenz at-
tractor! and 20 000~Roessler attractor! data points. The integration
step for both systems isDt50.01.
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Looking at the data structure of the Lorenz attractor co
pared to that of the CML’s, we see one important differen
For the CML’s, every coordinate shows the same distribut
of the values, but for the Lorenz attractor, every coordin
has a different distribution. This means that each coordin
generates a different curveD2

n(r ,1) for normalization, which
would give three different results. Therefore, we transfo
every coordinate of the data set to an average distributio
all coordinates. To get this distribution, we sort the values
every coordinate into numerical order and then average o
the corresponding values. Due to this ranking, the dimens
is invariant@21,22#.

The calculation of the large-scale dimensionD ls(r ,m)
5r ls(r ,m)* m of the Lorenz attractor with 1000 data poin
then givesD ls(r ,m)52.07 with a standard deviation ofs
50.032. Figure 6 shows the curves of the large-scale dim
sion compared with the original Grassberger-Procaccia a
rithm calculated with 1000 and 10 000 data points. For 10
data points, the curve calculated with the Grassberg
Procaccia algorithm does not show a plateau, so that
value for the dimension can be calculated. The value of
large-scale dimension is an average of the curve values
tween24, log2(r),22. This is almost the same result on
gets for averaging the values of the curve calculated with
Grassberger-Procaccia algorithm using 10 000 data po
Averaging the region in between26, log2(r),24 gives
D2(r ,m)52.06 withs50.027.

The same calculations with the Roessler attractor give
the following results~see Fig. 6!: D ls(r ,m)51.89,s50.03,
calculated with 2000 data points, with an average of24.7
, log2(r),22.7. A calculation with the Grassberge
Procaccia algorithm, using 20 000 data points, gives
a

s

fu

,
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D2(r ,m)51.81,s50.02, with an average of26.0, log2(r)
,23.5.

So it is also possible to calculate the large-scale dim
sion in low-dimensional systems with the normalizati
method, even if the result might be slightly different from th
correlation dimension calculated by the Grassberg
Procaccia algorithm~as for the Roessler attractor!. But the
advantage of the reduced amount of data more than com
sates for this slight difference.

III. CONCLUSIONS

In this paper, we have presented a method to calcu
large-scale dimension densities. The correction of the bou
ary effects leads to a plateau, which makes it possible
estimate the value of the large-scale dimension density. T
can be used to compare the strength of correlation in s
tially extended systems at different local points. It is n
certain that the large-scale dimension density gives the s
value that one would obtain by the Grassberger-Proca
algorithm for small scales because of the effects shown
Olbrich et al. @16#. But it is outside of the scope of this pape
to calculate exact values of dimensions for all scales. T
main intention is to get an instrument that works for sm
data sets.

In our future work, we will try some applications to ob
servations of complex spatiotemporal behavior with spa
correlations, such as data of climate models, which are m
more inhomogeneous than CML’s are, so that it is necess
to transform the coordinates as shown for the lo
dimensional systems. But the available data sets are
very limited @23#.
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